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This paper discussed an algorithm of finding electricity network on given vertices with
different costs. And we also consider about their geographical feature might change the topology
of network.

1. Introduction

1.1 Electricity grid
Definition 1.1.1. An electricity grid or electricity network is an interconnected network for delivery electricity to
demand points(cities, communities)

Remark 1.1.1. Electrical grid consist of power station(s), high voltage line to transfer the power between cities, and
some step down transformer to convert the high voltage into low voltage.

Example 1.1.1. Here is an example from Wiki

Fig. 1 Electrical grid

Remark 1.1.2. In this paper, we will introduce how to minimize the total cost of electricity network of given vertices if
there is some cost for edges and vertices.

1.2 Centralized and Decentralized System
Given an electricity grid we have two types of systems to provide power.
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Definition 1.2.1. Centralized system [1] is a power system that cities are connected by high voltage line and among
each city they have some internal network that transfer the high voltage into low voltage.

Definition 1.2.2. Decentralized system[2] is system that cities are powered by some facility nearby themselves, like
solar energy or wind power.

Definition 1.2.3. [1] For vertices that belong to decentralized system, they have some fixed cost that determine by the
city itself(life cost of building solar energy facilities), we call it as decentralized system cost/DSC

Definition 1.2.4. [1] For vertices belong to centralized system, they have three types of costs
• Internal grid cost/IGC: For any city 𝑖 belong to centralized system, 𝑖 itself need some money to convert the high

voltage electricity into low voltage.
• External grid cost/EGC: For any two cities (𝑖, 𝑗), their distance times the unit cost of high voltage line will be the

external grid cost
• Power station cost/PSC: For each centralized system, there is a fixed cost for building a power station, we defined

it as power power station cost.

Remark 1.2.1. In this paper, we assume each centralized system has only one power station.

Example 1.2.1. Here is an example of two systems and their costs:

Fig. 2 Centralized system and decentralize system

Remark 1.2.2. [2]In real life, some cities with large demand of power might want to build a centralized system. However,
the emissions from usage of fossil fuels from centralized system make people consider some sustainable energy like
solar power, wind power. Those needs are mainly the reason why people study decentralized system. The decentralized
systems could be connected with some other decentralized systems or just be isolated vertices.

Remark 1.2.3. Noted the electricity systems in this paper are trees, and for each system we need one power station to
provide energy to whole system.

1.3 Euclidean Steiner tree
Definition 1.3.1. Euclidean Steiner problem [3] is to find shortest network connecting a given set of points(terminal) 𝑇
in Euclidean plane if we are allowed to add extra junctions that is not belong to 𝑇

Example 1.3.1. Euclidean Steiner problem when |𝑇 | = 3, recall Fermat’s point of triangle 𝐴𝐵𝐶 is the point 𝐹 that
minimize the distance |𝐹𝐴| + |𝐹𝐵| + |𝐹𝐶 |, therefore, Fermat’s point is the solution for |𝑇 | = 3
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Definition 1.3.2. [3] Given a Euclidean Steiner problem, the tree we find out is defined as Euclidean Steiner tree (EST)

Definition 1.3.3. An 𝐸𝑆𝑇 is full if it has |𝑇 | − 2 steiner points, such 𝐸𝑆𝑇 we defined it as full steiner tree (FST).

Example 1.3.2. Here is an example of FST when |𝑇 | = 3, 4

Fig. 3 Example of 𝐹𝑆𝑇 when |𝑇 | = 3, 4

Theorem 1.3.1. Degree and angle properties[3]
• The Steiner tree must have three edges incident to each Steiner point,
• Every Steiner points have three incident edges, any two those three edges have 120 degree.

Remark 1.3.1. Clearly 𝐸𝑆𝑇 is very rare in real life, since its degree and angle requirement might not be feasible due to
some geographical reason.

1.4 Flat Region
Definition 1.4.1. Flat region is a region where allow the EST exist.

Remark 1.4.1. We define flat region because in real life some cities tend to gather in the flat plane. We will allow EST
exist only in flat region.

2. Methodology

2.1 Hexagonal coordinate system (HCS)
We introduce a method for finding the Euclidean Steiner Tree [4], if the topology of tree is given.

From Theorem 1.3.1 Steiner points have lines only three direction with 120◦ apart. Therefore we could use
hexagonal coordinate system (HCS). This subsection Introduce an idea from F.K. Hwang [4]

Let𝑈,𝑉,𝑊 be three axes going through the origin and cutting the plane into six 60◦ cones. Points in this plane are
represented by vector (𝑢, 𝑣, 𝑤)
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Fig. 4 Hexagonal system

Lemma 2.1.1. 𝑢 + 𝑣 + 𝑤 = 0 for any point 𝑃 = (𝑢, 𝑣, 𝑤)

Lemma 2.1.2. Let 𝑃 has Cartesian coordinates (𝑥, 𝑦). Then 𝑤 = −2𝑦/
√

3, 𝑢 = 𝑥 + 𝑦/
√

3, 𝑣 = −𝑥 + 𝑦/
√

3, in particular,

𝑥 =
𝑢 − 𝑣

2
, 𝑦 = −

√
3

2
𝑤

Proposition 2.1.1. Suppose 𝑠3 = (𝑢3, 𝑣3, 𝑤3) is connected to 𝑎1 = (𝑢1, 𝑣1, 𝑤1) and 𝑎2 = (𝑢2, 𝑣2, 𝑤2) and the lines at
𝑎1 and 𝑎2 are parallel to𝑈 axis and the 𝑉 axis, respectively. Then

𝑤3 = 𝑤1, 𝑢3 = 𝑢2, 𝑣3 = −𝑤3 − 𝑢3 = −𝑤1 − 𝑢2

𝑇 is bigraph with partite sets 𝑁1, 𝑁2, we assign direction to each edge and assume that an edge always starts from a
vertex in 𝑁2 and ends in a vertex in 𝑁1

Theorem 2.1.3. Define 𝜖𝑖 = 1 if 𝑎𝑖 is in 𝑁1 and 𝜖𝑖 = −1 otherwise. Define 𝑑𝑖 = 𝑢𝑖 (𝑣𝑖 , 𝑤𝑖 , 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦) if the line at
𝑎𝑖 is parallel to the 𝑉 (𝑊,𝑈, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦) axis. Then

𝑛∑︁
𝑖=1

𝜖𝑖𝑑𝑖 = 0, 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 characteristic equation of T.

Next, we would use some mathematics in linear algebra and trigonometry.

Proposition 2.1.2. The first term in the characteristic equation can be arbitrarily set to be 𝑢1, 𝑣1, 𝑤1

Theorem 2.1.4. We now consider the general case that the lines of an 𝐹𝑆𝑇 are parallel to the axes only after a
clockwise rotation of angle 𝜃. Define 𝑙 = cos 𝜃, 𝑘 = sin 𝜃/

√
3. Then the new coordinates can be obtained from the

original coordinates through the transformation

©­«
𝑢′

𝑣′

𝑤′

ª®¬ =

𝑙 𝑘 −𝑘
−𝑘 𝑙 𝑘

𝑘 −𝑘 𝑙

 ©­«
𝑢

𝑣

𝑤

ª®¬
Proposition 2.1.3. 𝑙2 + 3𝑘2 = 1

Example 2.1.1. Given five vertices with fixed coordinates and the topology of EST, and we find a Euclidean Steiner tree
for them.
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Assuming we have location of five points as below

𝑎1 = (2.08341, 1.08757961) 𝑎2 = (1.63409, 1.41168165) 𝑎3 = (1.61438, 1.41334364)
𝑎4 = (1.01234, 1.41849322) 𝑎5 = (1.69556, 0.56043465)

Their topology is in Fig.5

Fig. 5 Topology

By Lemma 2.1.2. we gain their hexagonal coordinate and denoted them as follow:

𝑎′1 = (2.71132438,−1.45549562,−1.25582876) 𝑎′2 = (2.44912478,−0.81905522,−1.63006956)
𝑎′3 = (2.43037433,−0.79838567,−1.63198866) 𝑎′4 = (1.83130744,−0.19337256,−1.63793488)
𝑎′5 = (2.0191271,−1.3719929,−0.64713419)

By Theorem 2.1.4 the rotation matrix 𝑇 =
©­«
𝑙 𝑘 −𝑘
−𝑘 𝑙 𝑘

𝑘 −𝑘 𝑙

ª®¬ and we obtain the rotated hex coordinate for each vertices

by 𝑎′′
𝑖
= 𝑇𝑎′

𝑖

𝑎′′1 = (2.71132438𝑙 − 0.19966686𝑘, −3.96715314𝑘 − 1.45549562𝑙, 4.16682𝑘 − 1.25582876𝑙)
𝑎′′2 = (2.44912478𝑙 + 0.81101434𝑘, −4.07919434𝑘 − 0.81905522𝑙, 3.26818𝑘 − 1.63006956𝑙)
𝑎′3 = (2.43037433𝑙 + 0.83360299𝑘, −4.06236299𝑘 − 0.79838567𝑙, 3.22876𝑘 − 1.63198866𝑙)
𝑎′4 = (1.83130744𝑙 + 1.44456232𝑘, −3.46924232𝑘 − 0.19337256𝑙, 2.02468𝑘 − 1.63793488𝑙)
𝑎′5 = (2.0191271𝑙 − 0.72485871𝑘, −2.66626129𝑘 − 1.3719929𝑙, 3.39112𝑘 − 0.64713419𝑙)

Then, by Theorem 2.1.3 we have characteristic function

−𝑣1 + 𝑢2 + 𝑣3 + 𝑣4 + 𝑤5 = 0.63768217𝑘 + 2.26572798𝑙 = 0

Noted by Proposition 2.1.3. 𝑙2+3𝑘2 = 1, so we solve for 𝑙, 𝑘 and get 𝑙 = 0.16038977570631482, 𝑘 = −0.5698757524960676.
Now just plug 𝑙, 𝑘 into each 𝑎′′

𝑖
and then using Proposition 2.1.1 we get coordinate of each Steiner point as follow:

𝑠1 = (−0.06936283, 2.18698927,−2.11762644)
𝑠2 = (0.09028867, 2.02733777,−2.11762644)
𝑠3 = (0.09028867, 1.9460221,−2.03631077)

Finally, we need to multiply 𝑠1, 𝑠2, 𝑠3 with 𝑇−1 and use Lemma 2.1.2 to find their coordinate in Cartesian plane.

𝑠1 = (1.62922803, 1.40771215)
𝑠2 = (1.6548345, 1.25012754)
𝑠3 = (1.59184586, 1.19870119)
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The graph is as below:

Fig. 6 An example

2.2 Modified Kruskal’s method (MK)
We introduce a new variable [5]

𝑀𝑉𝑚𝑎𝑥 =
𝐷𝑆𝐶 − 𝐼𝐺𝐶

Unit cost of medium voltage line

then in each iteration of Kruskal’s algorithm [6], we add a new constraint that if the 𝑀𝑉𝑚𝑎𝑥 of both vertices is greater
than their distance, then this edge should be added to the network.

Note that, we might end up with a forest then the largest tree will be considered as the main centralized system, the
rest pieces could either be smaller centralized system or some decentralized systems.
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Fig. 7 MK method with flat region

Assuming some vertices belong to a flat region.

Fig. 8 MK method with flat region

We now check those vertices in flat region, and find Euclidean Steiner tree by 𝐻𝐶𝑆.
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Fig. 9 MK method with flat region and EST

The new tree will have additional red vertices (Steiner points) and additional edges so these points and edges will
increase 𝐸𝐺𝐶. But the new system will shorten the 𝑃𝑆𝐶 since we decrease the number centralized system.

3. Result

We do a simulation based on a data generated by ourselves.
• Randomly generate 125 points in a plane
• For vertex 𝑖, 𝐷𝐶𝑆𝑖 ∼ 𝑢𝑛𝑖 𝑓 (9000, 15000)
• For vertex 𝑖, 𝐼𝐺𝐶𝑖 ∼ 𝑢𝑛𝑖 𝑓 (4000, 9000)
• For each Steiner point 𝑠𝑖 , its cost is generated by 𝑢𝑛𝑖 𝑓 (150, 600)
• 𝑃𝑆𝑇 ∼ 𝑢𝑛𝑖 𝑓 (6000, 10000)
• The unit cost of high voltage line is random variable follow 𝑢𝑛𝑖 𝑓 (40000, 60000)
The plot of 125 points and result of 𝑀𝐾 method is at next page
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Fig. 10 125 points with graph from MK

Then we randomly generate two circle stand for the flat regions, and we will find 𝐸𝑆𝑇 that connect the components
belong to these regions.

Fig. 11 125 points with flat region after 𝑀𝐾

We now use 𝐻𝐶𝑆 to find the 𝐸𝑆𝑇 connect those components. For each Steiner point we added, their cost is a
random variable from 𝑢𝑛𝑖 𝑓 (150, 600)
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Fig. 12 Final network

4. Discussion

According to our graph, we end up with a network that cover 84% of total vertices, this percentage should be
determined by their 𝐼𝐺𝐶, 𝐸𝐺𝐶, 𝐷𝑆𝐶 which are generated by uniform distribution. Noted the vertices are randomly
generated, in real life their location might depend on the geographical feature. If the components are connected by 𝐸𝑆𝑇
then we have extra 𝐸𝐺𝐶 since we have additional points (Steiner points) and edges, but we decrease the number of
power station, since for each system we need one power station. The potential issue we have here might be the cost of
Steiner points, they are fixed cost that generated from uniform distribution with same upper and lower bound as 𝐼𝐺𝐶,
they might be different since they are different from the demand points. Note the 𝑃𝑆𝑇 is also randomly generated from
𝑢𝑛𝑖 𝑓 (6000, 10000), but for those centralized system with more demand points, their cost might become larger. Because
in real life when a centralized system contain large number of cities, its 𝑃𝑆𝑇 should get increase since more demand
points require more energy.

The 𝐸𝑆𝑇 problem is actually NP hard [7]. Generally it will be extremely tough to find the topology of smallest 𝐸𝑆𝑇
from given vertices since there are superexponential number of those[8]. In Fig.11 we don’t have many components in
flat region so we can just enumerate all cases and then find it out, but in real life this part might be time consuming.

5. Conclusion

We compared our algorithm with Modified Kruskal’s algorithm that has no 𝐸𝑆𝑇 .

Algorithm/Costs Power plant PST PST for all systems Edges EGC IGC DSC Cost of each
Steiner point

Total cost

Modified Kruskal 10 6979.981 69799.81 95 269180.9 2182885 205613 0 1208281

Modified Kruskal with EST 8 6979.981 55839.85 102 277738.6 2182885 205613 1345.719 1204224

From Table above we can conclude for this data the 𝑀𝐾 with 𝐸𝑆𝑇 seems decrease the cost of electricity grid
compared with 𝑀𝐾 . This might because 𝑃𝑆𝑇 is too large so decrease the number of power plant will save a big cost of
building it.

In this paper, we provide an algorithm about minimizing the total cost of electricity network. Each iteration is
based on the costs of vertices. We also concluded that the topology of electricity network is mainly determined by
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the geographical feature, if the flat region is quite common on the map, then we can have more 𝐸𝑆𝑇 to connect more
components.
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